BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-E3166 2020ASTM E3166-20Historical Standard: Standard Guide for Nondestructive Examination of Metal Additively Manufactured Aerospace Parts After BuildASTM E3166Scope 1.1 This guide discusses the use of established and emerging nondestructive testing (NDT) procedures used to inspect metal parts made by additive manufacturing (AM). 1.2 The NDT procedures covered produce data related to and affected by microstructure, part geometry, part complexity, surface finish, and the different AM processes used. 1.3 The parts tested by the procedures covered in this guide are used in aerospace applications; therefore, the inspection requirements for discontinuities and inspection points in general are different and more stringent than for materials and components used in non-aerospace applications. 1.4 The metal materials under consideration include, but are not limited to, aluminum alloys, titanium alloys, nickel-based alloys, cobalt-chromium alloys, and stainless steels. 1.5 The manufacturing processes considered use powder and wire feedstock, and laser or electron energy sources. Specific powder bed fusion (PBF) and directed energy deposition (DED) processes are discussed. 1.6 This guide discusses NDT of parts after they have been fabricated. Parts will exist in one of three possible states: (1) raw, as-built parts before post-processing (heat treating, hot isostatic pressing, machining, etc.), (2) intermediately machined parts, or (3) finished parts after all post-processing is completed. 1.7 The NDT procedures discussed in this guide are used by cognizant engineering organizations to detect both surface and volumetric flaws in as-built (raw) and post-processed (finished) parts. 1.8 The NDT procedures discussed in this guide are computed tomography (CT, Section 7, including microfocus CT), eddy current testing (ET, Section 8), optical metrology (MET, Section 9), penetrant testing (PT, Section 10), process compensated resonance testing (PCRT, Section 11), radiographic testing (RT, Section 12), infrared thermography (IRT, Section 13), and ultrasonic testing (UT, Section 14). Other NDT procedures such as leak testing (LT) and magnetic particle testing (MT), which have known utility for inspection of AM parts, are not covered in this guide. 1.9 Practices and guidance for in-process monitoring during the build, including guidance on sensor selection and in-process quality assurance, are not covered in this guide. 1.10 This guide is based largely on established procedures under the jurisdiction of ASTM Committee E07 on Nondestructive Testing and is the direct responsibility of the appropriate subcommittee therein. 1.11 This guide does not recommend a specific course of action for application of NDT to AM parts. It is intended to increase the awareness of established NDT procedures from the NDT perspective. 1.12 Recommendations about the control of input materials, process equipment calibration, manufacturing processes, and post-processing are beyond the scope of this guide and are under the jurisdiction of ASTM Committee F42 on Additive Manufacturing Technologies. Standards under the jurisdiction of ASTM F42 or equivalent are followed whenever possible to ensure reproducible parts suitable for NDT are made. 1.13 Recommendations about the inspection requirements and management of fracture critical AM parts are beyond the scope of this guide. Recommendations on fatigue, fracture mechanics, and fracture control are found in appropriate end user requirements documents, and in standards under the jurisdiction of ASTM Committee E08 on Fatigue and Fracture. Note 1: To determine the deformation and fatigue properties of metal parts made by additive manufacturing using destructive tests, consult Guide F3122. Note 2: To quantify the risks associated with fracture critical AM parts, it is incumbent upon the structural assessment community, such as ASTM Committee E08 on Fatigue and Fracture, to define critical initial flaw sizes (CIFS) for the part to define the objectives of the NDT. 1.14 This guide does not specify accept-reject criteria used in procurement or as a means for approval of AM parts for service. Any accept-reject criteria are given solely for purposes of illustration and comparison. 1.15 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. 1.16 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.17 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords additive manufacturing; computed tomography; defect; directed energy deposition; discontinuities; flaw; lack of fusion; laser scanning; nondestructive testing; optical metrology; photogrammetry; penetrant testing; porosity; powder bed fusion; process compensated resonance testing; radiographic testing; structured light; thermographic testing; ultrasonic testing; unconsolidated powder; ICS Code ICS Number Code n/a DOI: 10.1520/E3166-20 The following editions for this book are also available...
This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|