|
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D5544 2011ASTM D5544 - 11Standard Test Method for On-Line Measurement of Residue After Evaporation of High-Purity WaterActive Standard ASTM D5544 | Developed by Subcommittee: D19.03 Book of Standards Volume: 11.01 ASTM D5544Significance and Use Even so-called high-purity water will contain contaminants. While not always present, these contaminants may contribute one or more of the following: dissolved active ionic substances such as calcium, magnesium, sodium, potassium, manganese, ammonium, bicarbonates, sulfates, nitrates, chloride and fluoride ions, ferric and ferrous ions, and silicates; dissolved organic substances such as pesticides, herbicides, plasticizers, styrene monomers, deionization resin material; and colloidal suspensions such as silica. While this test method facilitates the monitoring of these contaminants in high-purity water, in real time, with one instrument, this test method is not capable of identifying the various sources of residue contamination or detecting dissolved gases or suspended particles. This test method is calibrated using weighed amounts of an artificial contaminant (potassium chloride). The density of potassium chloride is reasonably typical of contaminants found in high-purity water; however, the response of this test method is clearly based on a response to potassium chloride. The response to actual contaminants found in high-purity water may differ from the test method's calibration. This test method is not different from many other analytical test methods in this respect. Together with other monitoring methods, this test method is useful for diagnosing sources of RAE in ultra-pure water systems. In particular, this test method can be used to detect leakages such as colloidal silica breakthrough from the effluent of a primary anion or mixed-bed deionizer. In addition, this test method has been used to measure the rinse-up time for new liquid filters and has been adapted for batch-type sampling (this adaptation is not described in this test method). Obtaining an immediate indication of contamination in high-purity water has significance to those industries using high-purity water for manufacturing components; production can be halted immediately to correct a contamination problem. The emerging nano-particle technology industry will also benefit from this information. 1. Scope 1.1 This test method covers the determination of dissolved organic and inorganic matter and colloidal material found in high-purity water used in the semiconductor, and related industries. This material is referred to as residue after evaporation (RAE). The range of the test method is from 0.001 ? g/L(ppb) to 60 ? g/L (ppb). 1.2 This test method uses a continuous, real time monitoring technique to measure the concentration of RAE. A pressurized sample of high-purity water is supplied to the test method's apparatus continuously through ultra-clean fittings and tubing. Contaminants from the atmosphere are therefore prevented from entering the sample. General information on the test method and a literature review on the continuous measurement of RAE has been published. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Section 8.
ASTM Standards D1129 Terminology Relating to Water D2777 Practice for Determination of Precision and Bias of Applicable Test Methods of Committee D19 on Water D3370 Practices for Sampling Water from Closed Conduits D3864 Guide for Continual On-Line Monitoring Systems for Water Analysis D3919 Practice for Measuring Trace Elements in Water by Graphite Furnace Atomic Absorption Spectrophotometry D5127 Guide for Ultra-Pure Water Used in the Electronics and Semiconductor Industries E1184 Practice for Determination of Elements by Graphite Furnace Atomic Absorption Spectrometry Keywords high-purity water; nonvolatile residue; residue after evaporation; Colloidal dispersions; Contamination--water; Dissolved elements (of water); High-purity water; Inorganic compounds--water; Nonvolatile residue (NVR); Organic compounds--water; Residue; Residue after evaporation (RAE); Semiconductors--water applications; ICS Code ICS Number Code 71.040.40 (Chemical analysis) DOI: 10.1520/D5544-11 ASTM International is a member of CrossRef. ASTM D5544The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|