BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D3382 2007ASTM D3382 - 07Standard Test Methods for Measurement of Energy and Integrated Charge Transfer Due to Partial Discharges (Corona) Using Bridge TechniquesActive Standard ASTM D3382 | Developed by Subcommittee: D09.12 Book of Standards Volume: 10.02 ASTM D3382Significance and Use These test methods are useful in research and quality control for evaluating insulating materials and systems since they provide for the measurement of charge transfer and energy loss due to partial discharges (4) (5) (6) . Pulse measurements of partial discharges indicate the magnitude of individual discharges. However, if there are numerous discharges per cycle it may be important to know their charge sum, since this sum can be related to the total volume of internal gas spaces that are discharging, if it is assumed that the gas cavities are simple capacitances in series with the capacitances of the solid dielectrics (7) (8) . Internal (cavity-type) discharges are mainly of the pulse (spark-type) with rapid rise times or the pseudoglow-type with long rise times, depending upon the discharge governing parameters existing within the cavity. If the rise times of the pseudoglow discharges are too long , they will evade detection by pulse detectors as covered in Test Method D 1868 . However, both the pseudoglow discharges irrespective of the length of their rise time as well as pulseless glow can be readily measured either by Method A or B of Test Methods D 3382. Pseudoglow discharges have been observed to occur in air, particularly when a partially conducting surface is involved. Such partially conducting surfaces may develop with polymers that are exposed to partial discharges for sufficiently long periods to accumulate acidic degradation products. Also in some applications, like turbogenerators, where a low molecular weight gas such as hydrogen is used as a coolant, pseudoglow discharges may develop. 1. Scope 1.1 These test methods cover two bridge techniques for measuring the energy and integrated charge of pulse and pseudoglow partial discharges: 1.2 Test Method A makes use of capacitance and loss characteristics such as measured by the transformer ratio-arm bridge or the high-voltage Schering bridge (Test Methods D 150). Test Method A can be used to obtain the integrated charge transfer and energy loss due to partial discharges in a dielectric from the measured increase in capacitance and tan with voltage. (See also IEEE 286 and IEEE 1434) 1.3 Test Method B makes use of a somewhat different bridge circuit, identified as a charge-voltage-trace (parallelogram) technique, which indicates directly on an oscilloscope the integrated charge transfer and the magnitude of the energy loss due to partial discharges. 1.4 Both test methods are intended to supplement the measurement and detection of pulse-type partial discharges as covered by Test Method D 1868, by measuring the sum of both pulse and pseudoglow discharges per cycle in terms of their charge and energy. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precaution statements are given in Section 7.
ASTM Standards D150 Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation D1711 Terminology Relating to Electrical Insulation D1868 Test Method for Detection and Measurement of Partial Discharge (Corona) Pulses in Evaluation of Insulation Systems IEEE Documents IEEEStandardC57.124 Recommended Practice for the Detection of PD and the Measurement of Apparent Charge in Dry-Type TransformersAEIC Documents AEICCS5-87 Specifications for Thermoplastic and Crosslinked Polyethylene Insulated Shielded Power Cables Rated 5 through 35 kV, 9th Edition, 1987Keywords bridge circuits; bridge techniques; capacitance increase; charge-voltage-trace bridge; corona; discharge energy; discharge inception level; energy; harmonics; integrated charge transfer; internal discharges; ionizing voltage; loop trace; partial discharges; pseudoglow discharge; pulse discharge; pulseless-glow discharge; pulse measurements; solid insulating materials; surface discharge; transformer-ratio-arm bridge; ICS Code ICS Number Code 17.220.20 (Measurement of electrical and magnetic quantities) DOI: 10.1520/D3382-07 ASTM International is a member of CrossRef. ASTM D3382The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|