BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-C1549 2009ASTM C1549 - 09Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar ReflectometerActive Standard ASTM C1549 | Developed by Subcommittee: C16.30 Book of Standards Volume: 04.06 ASTM C1549Significance and Use The temperatures of opaque surfaces exposed to solar radiation are generally higher than the adjacent air temperatures. In the case of roofs or walls enclosing conditioned spaces, increased inward heat flows result. In the case of equipment or storage containers exposed to the sun, increased operating temperatures usually result. The extent to which solar radiation affects surface temperatures depends on the solar reflectance of the exposed surface. A solar reflectance of 1.0 (100 % reflected) would mean no effect on surface temperature while a solar reflectance of 0 (none reflected, all absorbed) would result in the maximum effect. Coatings of specific solar reflectance are used to change the temperature of surfaces exposed to sunlight. Coatings and surface finishes are commonly specified in terms of solar reflectance. The initial (clean) solar reflectance must be maintained during the life of the coating or finish to have the expected thermal performance. The test method provides a means for periodic testing of surfaces in the field or in the laboratory. Monitor changes in solar reflectance due to aging and exposure, or both, with this test method. This test method is used to measure the solar reflectance of a flat opaque surface. The precision of the average of several measurements is usually governed by the variability of reflectances on the surface being tested. Use the solar reflectance that is determined by this method to calculate the solar energy absorbed by an opaque surface as shown in Eq 1. 1. Scope 1.1 This test method covers a technique for determining the solar reflectance of flat opaque materials in a laboratory or in the field using a commercial portable solar reflectometer. The purpose of the test method is to provide solar reflectance data required to evaluate temperatures and heat flows across surfaces exposed to solar radiation. 1.2 This test method does not supplant Test Method E903 which measures solar reflectance over the wavelength range 250 to 2500 nm using integrating spheres. The portable solar reflectometer is calibrated using specimens of known solar reflectance to determine solar reflectance from measurements at four wavelengths in the solar spectrum: 380 nm, 500 nm, 650 nm, and 1220 nm. This technique is supported by comparison of reflectometer measurements with measurements obtained using Test Method E903 . This test method is applicable to specimens of materials having both specular and diffuse optical properties. It is particularly suited to the measurement of the solar reflectance of opaque materials. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards C168 Terminology Relating to Thermal Insulation E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method E903 Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres E1980 Practice for Calculating Solar Reflectance Index of Horizontal and Low-Sloped Opaque Surfaces Additional Reference Instructionsf Devices and Services Company The sole source of supply of the apparatus known to the committee at this time is Devices & Services Company, 10024 Monroe Drive, Dallas, TX 75229. If you are aware of alternative suppliers, please provide this information to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee , which you may attend.Keywords portable reflectometer; reflectometer; solar reflectance; solar reflectometer; Ambient temperature; Portable reflectometer; Reflectance and reflectivity--solar devices; Reflectometer/reflectrometry; Solar reflectance; ICS Code ICS Number Code 27.160 (Solar energy engineering) DOI: 10.1520/C1549-09 ASTM International is a member of CrossRef. ASTM C1549The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|