BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Content DescriptionThis report presents a design-oriented approach for considering thermal effect on nuclear safety-related concrete structures. The approach presented in this report is intended to assist the licensed design professional in addressing the requirements of Appendix E of ACI CODE-349-13. Although this report is focused on the requirements of ACI CODE-349, the general behavior of structures under thermal effects and the significant issues to consider in design are broadly applicable in the design of other types of reinforced concrete members and structures. Three types of structures - frame structures, concrete wall structures, and axisymmetric structures - are addressed. For concrete wall structures, thermal and structural behaviors are discussed. Guidelines are provided for determining the required strengths for concrete walls subject to thermal loading combinations. For frame structures, a rationale is described for determining the extent of component cracking that can be assumed for purposes of obtaining the cracked structure thermal forces and moments. Stiffness coefficients and carryover factors are presented in graphical form as a function of the extent of component cracking along its length and the reinforcement ratio. Fixed-end thermal moments for cracked components are expressed in terms of these factors for: 1) a temperature gradient across the depth of the component; and 2) end displacements due to a uniform temperature change along the axes of adjacent components. For the axisymmetric shells, normalized cracked section thermal moments are presented in graphical form. These moments are normalized with respect to the cross-sectional dimensions and the temperature gradient across the section. The normalized moments are presented as a function of the internal axial forces and moments acting on the section and the reinforcement ratio. Use of the graphical information is illustrated by examples. Keywords: concrete walls; cracking (fracturing); frames; nuclear safety-related structures; shells; structural analysis; structural design; temperature; thermal effect; thermal gradient; thermal properties.About ACIFounded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development and distribution of consensus-based standards, technical resources, educational & training programs, certification programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete. ACI has over 95 chapters, 110 student chapters, and nearly 20,000 members spanning over 120 countries. |
GROUPS
|